

Git Portfolio

[image: PyPI] [https://pypi.org/project/git-portfolio/]
[image: Status] [https://pypi.org/project/git-portfolio/]
[image: Python Version] [https://pypi.org/project/git-portfolio/]
[image: License]

[image: Read the documentation at https://git-portfolio.readthedocs.io/]
[image: Tests] [https://github.com/staticdev/git-portfolio/actions?workflow=Tests]
[image: Codecov] [https://app.codecov.io/gh/staticdev/git-portfolio]

[image: pre-commit] [https://github.com/pre-commit/pre-commit]
[image: Black] [https://github.com/psf/black]

Features

	Configure multiple working repositories.

	Batch [git] commands with subcommands: add, branch, checkout, commit, diff, fetch, init, merge, mv, pull, push, rebase, reset, rm, show, switch, status and tag.

	Batch API calls on [GitHub]: create/close/reopen issues, create/close/reopen/merge pull requests and delete branches by name.

	Batch [Poetry] commands such as: add, version patch, install or update.

Requirements

	[Create an auth token for GitHub], with the repo privileges enabled by clicking on Generate new token. You will be asked to select scopes for the token. Which scopes you choose will determine what information and actions you will be able to perform against the API. You should be careful with the ones prefixed with write:, delete: and admin: as these might be quite destructive. You can find description of each scope in docs here.

Important: safeguard your token (once created you won’t be able to see it again).

	Install [git] (optional) - this is needed for all [git] commands. For colored outputs please use the configuration:

$ git config --global color.ui always

Installation

You can install Git Portfolio via [pip] from [PyPI]:

$ pip install git-portfolio

Basic usage

	Create initial configuration with:

$ gitp config init

	Execute all the commands you want. Eg.:

$ gitp issues create # create same issue for all projects
$ gitp checkout -b new-branch # checks out new branch new-branch in all projects
$ gitp poetry version minor # bumps minor version of all projects that have pyproject.toml version

Note: by convention GitHub commands are always the resource name and action: eg. branches delete, issues create and prs merge (for pull requests).
This avoid conflicts with batch git commands, as in gitp branch (executes git command) and gitp branches delete (execute operations using GitHub API).

Complete instructions can be found at [git-portfolio.readthedocs.io].

Contributing

Contributions are very welcome.
To learn more, see the Contributor Guide.

License

Distributed under the terms of the MIT license,
Git Portfolio is free and open source software.

Issues

If you encounter any problems,
please [file an issue] along with a detailed description.

Credits

This project was generated from [@cjolowicz]’s [Hypermodern Python Cookiecutter] template.

Usage

Basic usage

	Create initial configuration with:

$ gitp config init

	Execute all the commands you want. Eg.:

$ gitp issues create # create same issue for all projects
$ gitp checkout -b new-branch # checks out new branch new-branch in all projects
$ gitp poetry version minor # bumps minor version of all projects that have pyproject.toml version

Note: by convention GitHub commands are always the resource name and action: eg. branches delete, issues create and prs merge (for pull requests).
This avoid conflicts with batch git commands, as in gitp branch (executes git command) and gitp branches delete (execute operations using GitHub API).

Complete usage

gitp

Git Portfolio.

gitp [OPTIONS] COMMAND [ARGS]...

Options

	
--version

	Show the version and exit.

add

Batch git add command.

gitp add [OPTIONS] [ARGS]...

Arguments

	
ARGS

	Optional argument(s)

branch

Batch git branch command.

gitp branch [OPTIONS] [ARGS]...

Arguments

	
ARGS

	Optional argument(s)

branches

Branches command group.

gitp branches [OPTIONS] COMMAND [ARGS]...

delete

Batch deletion of branches on GitHub.

gitp branches delete [OPTIONS]

checkout

Batch git checkout command.

gitp checkout [OPTIONS] [ARGS]...

Arguments

	
ARGS

	Optional argument(s)

clone

Batch git clone command on current folder. Does not accept aditional args.

gitp clone [OPTIONS]

commit

Batch git commit command.

gitp commit [OPTIONS] [ARGS]...

Arguments

	
ARGS

	Optional argument(s)

config

Config command group.

gitp config [OPTIONS] COMMAND [ARGS]...

init

Initialize gitp config.

gitp config init [OPTIONS]

repos

Configure current working gitp repositories.

gitp config repos [OPTIONS]

diff

Batch git diff command.

gitp diff [OPTIONS] [ARGS]...

Arguments

	
ARGS

	Optional argument(s)

fetch

Batch git fetch command.

gitp fetch [OPTIONS] [ARGS]...

Arguments

	
ARGS

	Optional argument(s)

init

Batch git init command.

gitp init [OPTIONS] [ARGS]...

Arguments

	
ARGS

	Optional argument(s)

issues

Issues command group.

gitp issues [OPTIONS] COMMAND [ARGS]...

close

Batch close issues on GitHub.

gitp issues close [OPTIONS]

create

Batch creation of issues on GitHub.

gitp issues create [OPTIONS]

reopen

Batch reopen issues on GitHub.

gitp issues reopen [OPTIONS]

merge

Batch git merge command.

gitp merge [OPTIONS] [ARGS]...

Arguments

	
ARGS

	Optional argument(s)

mv

Batch git mv command.

gitp mv [OPTIONS] [ARGS]...

Arguments

	
ARGS

	Optional argument(s)

poetry

Batch poetry command.

gitp poetry [OPTIONS] [ARGS]...

Arguments

	
ARGS

	Optional argument(s)

prs

Pull requests command group.

gitp prs [OPTIONS] COMMAND [ARGS]...

close

Batch close pull requests on GitHub.

gitp prs close [OPTIONS]

create

Batch creation of pull requests on GitHub.

gitp prs create [OPTIONS]

merge

Batch merge of pull requests on GitHub.

gitp prs merge [OPTIONS]

reopen

Batch reopen pull requests on GitHub.

gitp prs reopen [OPTIONS]

pull

Batch git pull command.

gitp pull [OPTIONS] [ARGS]...

Arguments

	
ARGS

	Optional argument(s)

push

Batch git push command.

gitp push [OPTIONS] [ARGS]...

Arguments

	
ARGS

	Optional argument(s)

rebase

Batch git rebase command.

gitp rebase [OPTIONS] [ARGS]...

Arguments

	
ARGS

	Optional argument(s)

reset

Batch git reset command.

gitp reset [OPTIONS] [ARGS]...

Arguments

	
ARGS

	Optional argument(s)

rm

Batch git rm command.

gitp rm [OPTIONS] [ARGS]...

Arguments

	
ARGS

	Optional argument(s)

show

Batch git show command.

gitp show [OPTIONS] [ARGS]...

Arguments

	
ARGS

	Optional argument(s)

status

Batch git status command.

gitp status [OPTIONS] [ARGS]...

Arguments

	
ARGS

	Optional argument(s)

switch

Batch git switch command.

gitp switch [OPTIONS] [ARGS]...

Arguments

	
ARGS

	Optional argument(s)

tag

Batch git tag command.

gitp tag [OPTIONS] [ARGS]...

Arguments

	
ARGS

	Optional argument(s)

Reference

git_portfolio

Git Portfolio.

 Python Module Index

 g

 		 	

 		
 g	

 	
 	
 git_portfolio	

Index

 Symbols
 | A
 | G
 | M

Symbols

 	
 	
 --version

 	gitp command line option

A

 	
 	
 ARGS

 	gitp-add command line option

 	gitp-branch command line option

 	gitp-checkout command line option

 	gitp-commit command line option

 	gitp-diff command line option

 	gitp-fetch command line option

 	gitp-init command line option

 	gitp-merge command line option

 	gitp-mv command line option

 	gitp-poetry command line option

 	gitp-pull command line option

 	gitp-push command line option

 	gitp-rebase command line option

 	gitp-reset command line option

 	gitp-rm command line option

 	gitp-show command line option

 	gitp-status command line option

 	gitp-switch command line option

 	gitp-tag command line option

G

 	
 	
 git_portfolio

 	module

 	
 gitp command line option

 	--version

 	
 gitp-add command line option

 	ARGS

 	
 gitp-branch command line option

 	ARGS

 	
 gitp-checkout command line option

 	ARGS

 	
 gitp-commit command line option

 	ARGS

 	
 gitp-diff command line option

 	ARGS

 	
 gitp-fetch command line option

 	ARGS

 	
 gitp-init command line option

 	ARGS

 	
 gitp-merge command line option

 	ARGS

 	
 gitp-mv command line option

 	ARGS

 	
 	
 gitp-poetry command line option

 	ARGS

 	
 gitp-pull command line option

 	ARGS

 	
 gitp-push command line option

 	ARGS

 	
 gitp-rebase command line option

 	ARGS

 	
 gitp-reset command line option

 	ARGS

 	
 gitp-rm command line option

 	ARGS

 	
 gitp-show command line option

 	ARGS

 	
 gitp-status command line option

 	ARGS

 	
 gitp-switch command line option

 	ARGS

 	
 gitp-tag command line option

 	ARGS

M

 	
 	
 module

 	git_portfolio

 # Contributor Covenant Code of Conduct

Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

Our Standards

Examples of behavior that contributes to a positive environment for our community include:

	Demonstrating empathy and kindness toward other people

	Being respectful of differing opinions, viewpoints, and experiences

	Giving and gracefully accepting constructive feedback

	Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience

	Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:

	The use of sexualized language or imagery, and sexual attention or
advances of any kind

	Trolling, insulting or derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or email
address, without their explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate.

Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at <mailto:staticdev-support@protonmail.com>. All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the community.

Attribution

This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 2.0,
available at <https://www.contributor-covenant.org/version/2/0/code_of_conduct/>.

Community Impact Guidelines were inspired by [Mozilla’s code of conduct enforcement ladder](https://github.com/mozilla/inclusion).

For answers to common questions about this code of conduct, see the FAQ at
<https://www.contributor-covenant.org/faq>. Translations are available at <https://www.contributor-covenant.org/translations>.

[homepage]: https://www.contributor-covenant.org

 # Contributor Guide

Thank you for your interest in improving this project.
This project is open-source and welcomes contributions in the form of bug reports, feature requests, and pull requests.

Here is a list of important resources for contributors:

	[Source Code]

	[Documentation]

	[Issue Tracker]

	[Code of Conduct]

How to report a bug

Report bugs on the [Issue Tracker].

When filing an issue, make sure to answer these questions:

	Which operating system and Python version are you using?

	Which version of this project are you using?

	What did you do?

	What did you expect to see?

	What did you see instead?

The best way to get your bug fixed is to provide a test case,
and/or steps to reproduce the issue.

How to request a feature

Request features on the [Issue Tracker].

How to set up your development environment

You need Python 3.9+ and the following tools:

	[Poetry]

	[Nox]

Install the package with development requirements:

`console
$ poetry install
`

You can now run an interactive Python session,
or the command-line interface:

`console
$ poetry run python
$ poetry run git-portfolio
`

How to test the project

Run the full test suite:

`console
$ nox
`

List the available Nox sessions:

`console
$ nox --list-sessions
`

You can also run a specific Nox session.
For example, invoke the unit test suite like this:

`console
$ nox --session=tests
`

Unit tests are located in the tests directory,
and are written using the [pytest] testing framework.

How to submit changes

Open a [pull request] to submit changes to this project.

Your pull request needs to meet the following guidelines for acceptance:

	The Nox test suite must pass without errors and warnings.

	Include unit tests. This project maintains 100% code coverage.

	If your changes add functionality, update the documentation accordingly.

Feel free to submit early, though—we can always iterate on this.

To run linting and code formatting checks before commiting your change, you can install pre-commit as a Git hook by running the following command:

`console
$ nox --session=pre-commit -- install
`

It is recommended to open an issue before starting work on anything.
This will allow a chance to talk it over with the owners and validate your approach.

%

 Copyright (C) 2022 by staticdev

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 _static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Git Portfolio

_static/plus.png

